Ultrasonically assisted drilling of aerospace CFRP/Ti stacks
Procedia CIRP, ISSN: 2212-8271, Vol: 77, Page: 383-386
2018
- 30Citations
- 54Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Structural application involving aerospace stacks consisting of carbon-fiber-reinforced plastics (CFRP) and metals (such as aluminium and titanium) are characterized by their superior mechanical properties and relative ease of design. In many of such applications, drilling is required for hole making to facilitate fasteners for assembly. However, drilling with conventional methods pose several well-documented challenges including a requirement of an additional step for de-burring, increased tool wear, damage in the composite phase etc. Ultrasonically assisted drilling (UAD) is a hybrid machining technique, which has proven to enhance drilling quality in hard-to-machine materials. In this paper, UAD of stacks is implemented demonstrating significant improvement in hole quality produced in aerospace CFRP/Ti study with reduced drilling forces and energy spent.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2212827118311971; http://dx.doi.org/10.1016/j.procir.2018.09.041; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85057411339&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2212827118311971; https://dx.doi.org/10.1016/j.procir.2018.09.041
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know