Design Guidelines for Additive Manufactured Particle Dampers: A Review
Procedia CIRP, ISSN: 2212-8271, Vol: 119, Page: 891-896
2023
- 7Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Recently, additive manufacturing has been used to integrate particle dampers into structural components, particularly by means of laser powder bed fusion (LPBF), in order to significantly reduce component vibrations. The advantage over previous damping mechanisms is that these can be functionally integrated directly into the component during the additive manufacturing process by leaving unmelted powder in the component. This allows local damping effects to be adjusted and low-vibration lightweight structures to be developed and manufactured. In addition, the damping properties act over a wide frequency range and are insensitive to temperature. Despite the positive damping properties, the use of laser beam melted particle dampers is limited at the present time, since there are not yet sufficient design tools available due to the numerous non-linear influences. This is where the current contribution comes in, by developing design guidelines for laser beam melted particle dampers. The results were finally summarised in a design catalogue and support a suitable design of laser beam melted particle dampers.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2212827123005905; http://dx.doi.org/10.1016/j.procir.2023.03.134; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85169878557&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2212827123005905; https://dx.doi.org/10.1016/j.procir.2023.03.134
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know