Enhancing economic efficiency in modular production systems through deep reinforcement learning
Procedia CIRP, ISSN: 2212-8271, Vol: 121, Page: 55-60
2024
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures11
- Readers11
- 11
Article Description
In times of increasingly complex production processes and volatile customer demands, the production adaptability is crucial for a company's profitability and competitiveness. The ability to cope with rapidly changing customer requirements and unexpected internal and external events guarantees robust and efficient production processes, requiring a dedicated control concept at the shop floor level. Yet in today's practice, conventional control approaches remain in use, which may not keep up with the dynamic behaviour due to their scenario-specific and rigid properties. To address this challenge, deep learning methods were increasingly deployed due to their optimization and scalability properties. However, these approaches were often tested in specific operational applications and focused on technical performance indicators such as order tardiness or total throughput. In this paper, we propose a deep reinforcement learning based production control to optimize combined techno-financial performance measures. Based on pre-defined manufacturing modules that are supplied and operated by multiple agents, positive effects were observed in terms of increased revenue and reduced penalties due to lower throughput times and fewer delayed products. The combined modular and multi-staged approach as well as the distributed decision-making further leverage scalability and transferability to other scenarios.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2212827123009605; http://dx.doi.org/10.1016/j.procir.2023.09.229; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85185195568&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2212827123009605; https://dx.doi.org/10.1016/j.procir.2023.09.229
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know