Concept drift monitoring for industrial load forecasting with artificial neural networks
Procedia CIRP, ISSN: 2212-8271, Vol: 130, Issue: 27, Page: 120-125
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Long Short-Term Memory (LSTM) models are frequently applied for industrial energy load forecasting. However, real-world production systems are highly dynamic which poses major challenges. Concept drifts potentially lead to performance degradation that affects systems optimization for the worse. In this work, Concept Drift Detection (CDD) for industrial energy load forecasting with LSTM models is researched. For this purpose, five CDD algorithms are evaluated using the active power of a machine tool. Drift Detection Method (DDM) and Kolmogorov-Smirnov Windowing (KSWIN) proved to be particularly effective with easily interpretable and reasonable hyperparameters.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know