Impact Mitigation of Tunnels Maintenance Works on Highway Performance
Procedia Structural Integrity, ISSN: 2452-3216, Vol: 62, Page: 998-1005
2024
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Major maintenance interventions on highways (e.g., for the safety improvement of tunnels and viaducts) involve the presence of work zones for extended periods of time and along wide sections of the infrastructure. These interventions lead to supply changes, especially a reduction in capacity, causing a decrease in the performance of the transportation system, which users experience with increased traffic congestion and economic losses in terms of productivity. This paper aims to demonstrate that proper traffic management and work zone planning allow for a significant reduction of such impacts. In relation to traffic management, possible solutions consist of diverting traffic flows onto alternative routes (if possible, using primary roads) or keeping them in the remaining lanes along the work zone. In terms of work zone planning, leverage can be applied, on the one hand, through the design of the work zone layout and maintenance scheme and, on the other, through the duration and scheduling of the interventions. The methodology proposed in this paper is based on traffic simulation models in order to assess different maintenance scenarios under varying demand levels (i.e., during the rush hour and off-peak hours, weekdays and weekends, summer and winter months) and vehicular compositions (i.e., percentage of heavy vehicles), with the goal of identifying the scenario that minimizes the impacts on users. Modelling evidence on a real case study of tunnel maintenance interventions on an Italian highway is reported, discussing the policy implications on the basis of quantitative indicators, such as level of service, duration of delays, length of queues, and economic impacts.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know