Assessing the Evolution of Structural Health Monitoring through Smart Sensor Integration
Procedia Structural Integrity, ISSN: 2452-3216, Vol: 64, Page: 653-660
2024
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Structural Health Monitoring (SHM) is a vital, continuous, and real-time process for evaluating the physical and functional conditions of various structures, such as buildings, bridges, dams, tunnels, and infrastructures. The primary goal of SHM is to ensure the long-term safety and integrity of these structures by minimizing risks associated with unforeseen failures and extending their operational lifespan. This involves deploying specialized sensors and instruments to collect pertinent data, including stresses, deformations, vibrations, temperature, and other parameters that indicate the state of structural integrity. Especially critical for high-risk structures like bridges and skyscrapers, SHM plays a pivotal role in early problem identification, enabling more efficient scheduling of maintenance and interventions. This, in turn, leads to reduced maintenance costs, enhanced structural safety, and prolonged lifespans for constructions. This study analyses the current state of smart sensor development and their potential to replace conventional methods in structural health monitoring (SHM) through a brief review of existing research. It underscores the critical role of SHM in maintaining the safety and efficiency of structures, especially bridges and viaducts. The research highlights the transformative impact of smart sensors in improving early anomaly detection, structural performance evaluation, and maintenance optimization. By integrating smart technologies with traditional monitoring methods, significant practical benefits such as reduced maintenance costs and extended infrastructure lifespan are demonstrated. The study also emphasizes the need for ongoing research and development to enhance the accessibility and effectiveness of SHM systems in real-world applications, aligning with current advancements in the field.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know