Recycling gold mine tailings into eco-friendly backfill material for a coal mine goaf: Performance insights, hydration mechanism, and engineering applications
Process Safety and Environmental Protection, ISSN: 0957-5820, Vol: 193, Page: 95-114
2025
- 1Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Recycling gold mine overflow tailings for coal mine filling is crucial for sustainable mining. In this work, an eco-friendly, performance-controllable overflow tailings-fly ash-based backfill material is developed for coal mine filling. The effects of three critical factors, namely, the slurry concentration (SC), cement-sand ratio (C:S), and tailings-fly ash ratio (T:F), on the workability and uniaxial compressive strength (UCS) properties of the novel backfill material are thoroughly investigated, and an optimization of the corresponding formulation is conducted. The optimal formula for the backfill is determined to be a CS of 60 %, a C:S of 0.10, and a T:F of 6:6. The hydration mechanism of the chosen typical mixtures is analyzed via X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy, and the results show that a needle-like Aft gel, identified as the major gelatinous product, is intricately intertwined to create an intricate network structure. As the T:F increases, the content of calcium and silicon oxide initially decreases but then increases, and the optimal mixture reaches a minimum value of 63.66 %. The optimum specimen exhibits a peak wavenumber at 1109.46 cm −1 involving a Si-O stretching vibration bond. A comprehensive filling program at the Liangjia Coal Mine is successfully implemented. Approximately 0.27 tons of overflow tailings are utilized for every ton of backfills. The underground core-pulling backfill achieves a peak uniaxial compressive strength (UCS) of 7.56 MPa after 28 d, surpassing design requirements and showing promise for coal mine filling applications. This study is expected to achieve the transformation of a coal mine goaf into a gold mine tailings pond.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know