Astrometry with PRAIA
Planetary and Space Science, ISSN: 0032-0633, Vol: 238, Page: 105801
2023
- 4Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
PRAIA – Package for the Reduction of Astronomical Images Automatically – is a suite of astrometric and photometric tasks designed to cope with huge amounts of heterogeneous observations with fast processing, no human intervention, minimum parameterization and yet maximum possible accuracy and precision. It is the main tool used to analyse astronomical observations by an international collaboration involving Brazilian, French and Spanish researchers under the Lucky Star umbrella for Solar System studies. In this paper, we focus on the astrometric concepts underneath PRAIA, used in reference system works, natural satellite and NEA astrometry for dynamical and ephemeris studies, and lately for the precise prediction of stellar occultations by planetary satellites, dwarf-planets, TNOs, Centaurs and Trojan asteroids. We highlight novelties developed by us and never reported before in the literature, which significantly enhance astrometry precision and automation. Such as the robust object detection and aperture characterization (BOIA), which explains the long standing empirical photometry/astrometry axiom that recommends using apertures with 2 – 3 σ (Gaussian width) radius. We give examples showing the astrometry performance, discuss the advantages of PRAIA over other astrometry packages and comment about future planed astrometry implementations. PRAIA codes and input files are publicly available for the first time at: https://ov.ufrj.br/en/PRAIA/. PRAIA astrometry is useful for Solar System as well as astrophysical observations.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0032063323001708; http://dx.doi.org/10.1016/j.pss.2023.105801; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85175082075&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0032063323001708; https://dx.doi.org/10.1016/j.pss.2023.105801
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know