Late glacial climate evolution in the Patagonian Andes (44–47° S) from alpine glacier modelling
Quaternary Science Reviews, ISSN: 0277-3791, Vol: 305, Page: 108035
2023
- 9Citations
- 19Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Numerical glacier models applied to moraine chronologies provide an opportunity to quantify past climate change. Here we apply a two-dimensional coupled mass balance – ice flow model to well-dated moraine sequences deposited by former alpine glaciers at two central Patagonian sites: Cerro Riñón (43.97°S, 71.64°W) and Río Tranquilo (47.50°S, 72.38°W), to reconstruct the local temperatures during both the Antarctic Cold Reversal (14.7–13 ka) and the Younger Dryas (12.9–11 ka). Modelled temperature anomalies during the Antarctic Cold Reversal are −2.6 ± 0.4 °C at 44°S, and −2.9 ± 0.6 °C at 47°S. At both locations this cold event is followed by temperature increases of +0.6–0.7 °C or precipitation reductions of c. 20% to drive glacier retreat to moraines deposited during Younger Dryas time. The consistent climatic anomalies between these two latitudes suggest this region of Patagonia was responding to a common climatic event. Further, the late-glacial temperature anomalies found here compare well to those determined by similar glacier modelling techniques in New Zealand, at 43–44° S. These results support a trans-Pacific response throughout the southern mid to high latitudes (43–47° S) during the ACR that is best explained by a northward expansion of the south westerly winds.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0277379123000835; http://dx.doi.org/10.1016/j.quascirev.2023.108035; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85150781478&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0277379123000835; https://dx.doi.org/10.1016/j.quascirev.2023.108035
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know