Low melting point MCP-69, MCP-96, MCP-137, and MCP-200 alloys for radiation protection in radiological and therapeutic processes
Radiation Medicine and Protection, ISSN: 2666-5557, Vol: 3, Issue: 4, Page: 175-182
2022
- 2Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
To evaluate the low melting-point MCP-69, MCP-96, MCP-137, and MCP-200 alloys, and characterize them for their potential to protect from the harms associated with radiation and eliminate radiation hazards during radiological procedures and treatment of cancer. The Klein-Nishina formula was used to calculate the electronic and atomic cross-sections of these alloys using photon beams with energies 4, 6, 9, 12, and 18 MeV. Energy transfer coefficients, Compton mass attenuation coefficient, mass-energy transfer coefficient, and recoil energy of electrons in the specific photon energies of 4–18 MeV were calculated. The alloys' effective charge number and the photon energy were key factors in determining the properties found by utilizing the Klein-Nishina formula and Compton effects. The cross sections and energy transfer coefficients increased with the increasing effective charge number Z of the alloys and decreased as the photon energy increased. The Compton recoil of the ejected electrons was observed to have a direct relationship with photon energy, but mass-energy transfer decreased with increasing photon energy. These alloys can replace the toxic lead for environmentally cleaned radiation applications. These calculations and characteristics of the MCP alloys can help further determine their viability as materials for radiation shielding, their use in safe cancer diagnosis, treatment, and environmental hazards protection.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2666555722000594; http://dx.doi.org/10.1016/j.radmp.2022.08.003; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85144652051&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2666555722000594; https://dx.doi.org/10.1016/j.radmp.2022.08.003
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know