Mechanical and shape memory properties of Eucommia ulmoides gum-based elastic fibers with various architectures
Reactive and Functional Polymers, ISSN: 1381-5148, Vol: 200, Page: 105937
2024
- 1Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Eucommia ulmoides gum (EUG) is composed of trans -1,4-polyisoprene with high flexibility and crystallinity, and could be utilized as elastic and thermoplastic materials. Taking advantage of the unique crystallization characteristics, a series of EUG-based complex elastic fibers were prepared by wet-spinning method using different types of needles. It was found that the EUG fiber displayed excellent mechanical properties including high tensile strength (42.8 MPa), elongation at break (572%), and toughness (136.8 MJ m −3 ). The complex elastic fibers combining different compositions and various architectures have higher temperature sensitivity and excellent shape memory recovery ability compared to EUG elastomer. Meanwhile, the elastic fibers containing EUG and butyl rubber (IIR) exhibited better damping properties than pristine EUG. Therefore, this work provided a way to enhance the functionality and expand the application of bio-based EUG materials.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1381514824001123; http://dx.doi.org/10.1016/j.reactfunctpolym.2024.105937; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85192703777&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1381514824001123; https://dx.doi.org/10.1016/j.reactfunctpolym.2024.105937
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know