Functionalized carbon nanotube-quantum dot thin film nanocomposite membrane for separation of β-substituted-α-amino acid enantiomers
Reactive and Functional Polymers, ISSN: 1381-5148, Vol: 205, Page: 106079
2024
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures9
- Readers9
Article Description
This work introduces a novel thin-film nanocomposite membrane, designed for highly efficient chiral separation, utilizing functionalized Multi-walled Carbon Nantubes (COOH-MWCNTs) and carbon quantum dots (CQDs). Fabricated via interfacial polymerization on a polysulfone support embedded with COOH-MWCNTs, the membrane was evaluated for its ability to separate racemic mixtures of 3,4-dihydroxyphenylalanine, tryptophan, threonine, tyrosine, and 1-methyltryptophan. The optimized membrane composition was found to be 3 % COOH-MWCNTs and 2 % CQDs in 4 bar operating pressure, feed concentrations at 10 mmol·L −1, and temperature at 35 °C, under which an enantiomeric excess (%ee) was achieved as 99 % for L-tryptophan in the permeate side, the highest among the five tested racemic mixtures. This enhanced separation performance is driven by the synergistic role of COOH-MWCNTs in the support layer and the precise interactions between CQDs and D-tryptophan in the active layer. Additionally, the membrane exhibited excellent long-term stability and antifouling properties, ensuring sustained performance over ten permeation cycles. The membrane's outstanding enantioselectivity, mechanical robustness, and durability represent a significant breakthrough in chiral separation technologies.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know