A simplified multi-objective planning approach for allocation of distributed PV generators in unbalanced power distribution systems
Renewable Energy Focus, ISSN: 1755-0084, Vol: 48, Page: 100541
2024
- 11Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Uneven distribution of loads in three-phase power networks causes voltage unbalances and reduces system’s efficiency. Adding PV generation that is intermittent only makes issues more challenging. Taking into account seasonal changes in both load demand and PV generation, this study presents a new method for the precise placement of PV systems inside unbalanced networks in order to enhance system performance. The most efficient PV hosting is accomplished with the help of a novel value-adaptive weight-aggregated (VAWA) grey-wolf optimizer (GWO) within a multi-objective problem framework. The use of the VAW aggregation strategy may effectively mitigate the limitations associated with the linearization problem with multiple objective functions. This approach is suitable for combining several objectives into a single aggregated objective. Two diverse unbalanced radial distribution systems (URDSs) are considered for the investigation in order to examine and validate the recommended method. Voltage unbalance factor (VUF), voltage security factor (VSF), and active power loss (APL) are three distinctive objectives that are considered to be key contributors to the distribution system performance parameter on an annual basis. The yearly average VSF, VUF, and APL of the Indian 19-bus URDS test network improved by 0.62%, 12.97%, and 38.81% once the PV system was included. Compared to before PV allocation, the modified IEEE 123-bus test network's annual average VSF and APL are improved by 0.081% and 13.42%, respectively. GWO convergence data from the obtained results reveals that it outperforms PSO by reaching the global optimum solution on multiple occasions with regard to test runs.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S175500842400005X; http://dx.doi.org/10.1016/j.ref.2024.100541; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85184490904&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S175500842400005X; https://dx.doi.org/10.1016/j.ref.2024.100541
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know