Modeling for control of a kinematic wobble-yoke Stirling engine
Renewable Energy, ISSN: 0960-1481, Vol: 75, Page: 808-817
2015
- 17Citations
- 24Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper we derive the dynamical model of a four-cylinder double-acting wobble-yoke Stirling engine. In addition to the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems viewpoint to analyze the dynamic properties of the engine. We show that the Stirling engine can be viewed as a closed-loop system, in which the pressure variations in the cylinders behave as the feedback control law.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S096014811400665X; http://dx.doi.org/10.1016/j.renene.2014.10.038; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84918573848&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S096014811400665X; https://dx.doi.org/10.1016/j.renene.2014.10.038
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know