Life cycle assessment of charcoal production and electricity generation from eucalyptus in an industrial batch kiln
Renewable Energy, ISSN: 0960-1481, Vol: 180, Page: 232-244
2021
- 13Citations
- 52Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Brazilian charcoal is produced from planted eucalyptus forest wood in traditional batch reactors. The ordinary technology applied in Brazil does not use pyrolysis waste gases, which leads to the loss of 30% of wood energy and decreases air quality. This study evaluated the synchronous use of industrial batch kilns, waste gas burning, and energy recovery to produce electricity. Three scenarios were analyzed: (S1) Eucalyptus charcoal production without gas burning (Base Scenario); (S2) with gas burning; and (S3) with gas burning and electricity generation. Since a eucalyptus forest can fix carbon into its biomass through photosynthesis and finally into charcoal, S1 was able to reduce 3402.5 kg of CO2-eq per Mg of charcoal produced, and S2 reduced 6453.1 kg of CO2-eq due to waste gas methane burning. Electricity production is environmentally positive for all evaluated environmental indicators thanks to gas pollutants destruction and renewable energy generation. For S1, a ratio difference of 6.3 was found between the output of renewable energy and fossil energy input during the charcoal life cycle. For a combined production of charcoal and electricity (S3), a ratio difference of 6.9 was found. Photochemical oxidation was the main impact which can be significantly reduced by adopting gas flaring.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960148121012003; http://dx.doi.org/10.1016/j.renene.2021.08.040; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85113435831&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0960148121012003; https://dx.doi.org/10.1016/j.renene.2021.08.040
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know