Modeling and protection of photovoltaic systems during lightning strikes: A review
Renewable Energy, ISSN: 0960-1481, Vol: 184, Page: 134-148
2022
- 44Citations
- 86Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The integration of renewable energy (RE) sources is increasing day by day because of their permanent existence and the limited quantities of fossil fuels. One of the most promising RE sources is photovoltaic (PV) technology, which is developing quickly in many countries worldwide. PV cells generate electricity by converting the sunlight to DC voltage. PV arrays are installed in outdoor areas and on the rooftops of homes to be directly subjected to the sun. Consequently, they are frequently subjected to lightning strikes, which may cause damage to PV arrays, service interruption, and additional cost for PV replacement. Therefore, an adequate lightning protection system (LPS) must be installed to protect the PV panels. In addition, the transient performance of PV panels during lightning strikes must be analyzed well. This paper presents a comprehensive review of the superior modeling methods of PV systems during lightning strikes. In addition, the paper displays the different platforms to simulate the transient effects of lightning strikes on PV systems. The lightning transient effects on PV arrays are studied based on the system modeling to assess the recommended LPS designs studied in the literature. The paper also gives some recommendations about the modeling methods and protection of PV systems during lightning strike.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0960148121016682; http://dx.doi.org/10.1016/j.renene.2021.11.083; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85120919361&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0960148121016682; https://dx.doi.org/10.1016/j.renene.2021.11.083
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know