Respiratory motoneurons and pathological conditions: Lessons from hypoglossal motoneurons challenged by excitotoxic or oxidative stress
Respiratory Physiology & Neurobiology, ISSN: 1569-9048, Vol: 179, Issue: 1, Page: 89-96
2011
- 16Citations
- 33Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- 16
- CrossRef12
- Captures33
- Readers33
- 33
Review Description
Hypoglossal motoneurons (HMs) are respiration-related brainstem neurons that command rhythmic contraction of the tongue muscles in concert with the respiratory drive. In experimental conditions, HMs can exhibit a range of rhythmic patterns that may subserve different motor outputs and functions. Neurodegenerative diseases like amyotrophic lateral sclerosis (ALS; Lou-Gehrig disease) often damage HMs with distressing symptoms like dysarthria, dysphagia and breathing difficulty related to degeneration of respiratory motoneurons. While the cause of ALS remains unclear, early diagnosis remains an important goal for potential treatment because fully blown clinical symptoms appear with degeneration of about 30% motoneurons. Using a simple in vitro model of the rat brainstem to study the consequences of excitotoxicity or oxidative stress (believed to occur during the onset of ALS) on HMs, it is possible to observe distinct electrophysiological effects associated with HM experimental pathology. In fact, excitotoxicity caused by glutamate uptake block triggers sustained bursting and enhanced synaptic transmission, whereas oxidative stress generates slow depolarization, augmented repeated firing, and decreased synaptic transmission. In either case, only a subpopulation of HMs shows abnormal functional changes. Although these two insults induce separate functional signatures, the consequences on HMs after a few hours are similar and are preceded by activation of the stress transcription factor ATF-3. The deleterious action of excitotoxicity is inhibited by early administration of riluzole, a drug currently employed for the symptomatic treatment of ALS, demonstrating that this in vitro model can be useful for testing potential neuroprotective agents.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1569904811000991; http://dx.doi.org/10.1016/j.resp.2011.03.017; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=80053231131&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/21443969; https://linkinghub.elsevier.com/retrieve/pii/S1569904811000991; https://dx.doi.org/10.1016/j.resp.2011.03.017
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know