An evacuation path planning method for multi-hazard accidents in chemical industries based on risk perception
Reliability Engineering & System Safety, ISSN: 0951-8320, Vol: 244, Page: 109912
2024
- 17Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Evacuation path planning is an important research topic in emergency management of chemical accidents. Facing the challenges of the continuous increase in the frequency of multi-hazard chemical accidents including fires, explosions, and toxic releases, the requirement to improve the evacuation path planning method considering the dynamic and multi-hazard characteristics of the accidents has become increasingly urgent. In order to address the shortcomings of the static, single-hazard, and passive evacuation path planning methods, this paper proposes an evacuation path planning method for multi-hazard accidents in chemical industries based on advance and on-site risk perception. This method applies dynamic and comprehensive risk analysis as the equivalent distance criterion to improve the D* path planning algorithm. A chemical park in Guangzhou, China, is adopted as a case study to verify the effectiveness of the proposed method and quantitatively demonstrate the effect of the method in improving evacuation efficiency. This paper further discusses the flexibility of the proposed method in considering environmental factors, evacuation preferences, and emergency response requirements. The evacuation path planning method proposed in this paper is expected to contribute to the optimization of emergency management of multi-hazard accidents and provide guidance for the enhancement of safety and loss prevention in chemical industries.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0951832023008268; http://dx.doi.org/10.1016/j.ress.2023.109912; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85182259432&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0951832023008268; https://dx.doi.org/10.1016/j.ress.2023.109912
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know