Silicon on a graphene nanosheet with triangle- and dot-shape: Electronic structure, specific heat, and thermal conductivity from first-principle calculations
Results in Physics, ISSN: 2211-3797, Vol: 15, Page: 102625
2019
- 28Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The electronic structure, specific heat, and thermal conductivity of silicon embedded in a monolayer graphene nanosheet are studied using Density Functional Theory. Two different shapes of the substitutional Si doping in the graphene are studied, a triangular and a dot shape. The silicon doping of a graphene nanosheet, with the silicon atoms arranged in a triangular configuration in ortho- and para-positions, opens up a band gap transforming the sheet to a semiconducting material. The opening of the band gap is caused by the presence of the repulsion force between the silicon and carbon atoms decreasing the density of states around the Fermi energy. Consequently, the specific heat and the thermal conductivity of the system are suppressed. For graphene nanosheet doped with a dot-like configuration of silicon atoms, at the ortho-, meta-, and para-positions, the valence band crosses the Fermi level. This doping configuration increases the density of state at the Fermi level, but mobile charge are delocalized and diminished around the silicon atoms. As a result, the specific heat and the thermal conductivity are enhanced. Silicon substitutionally doped graphene nanosheets may be beneficial for photovoltaics and can further improve solar cell devices by controlling the geometrical configuration of the underlying atomic systems.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2211379719317140; http://dx.doi.org/10.1016/j.rinp.2019.102625; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85071628452&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2211379719317140; https://dx.doi.org/10.1016/j.rinp.2019.102625
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know