Estimating tree aboveground biomass using multispectral satellite-based data in Mediterranean agroforestry system using random forest algorithm
Remote Sensing Applications: Society and Environment, ISSN: 2352-9385, Vol: 23, Page: 100560
2021
- 22Citations
- 86Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Forest aboveground biomass (AGB) is a key biophysical variable to assess and monitor the spatio-temporal changes of forest ecosystems. AGB should be accurately and timely estimated through remote sensing to provide valuable information to better support sustainable forest management strategies. QuickBird and WorldView-2 satellites data and Random Forest (RF) regression model were used to estimate tree AGB in Mediterranean agroforestry systems. Spectral bands, vegetation indices and Grey-Level Co-occurrence Matrix (GLCM) texture features of 140 plots with and without vegetation mask were used as independent variables, while total of AGB per plot was used as dependent variable. A model with good performance was obtained for a complex agroforestry system, with an R 2 of 82.0% and RMSE of 10.5 t/ha (22.6%). The top 11 most important variables have 80.3% of total relative importance, with 59.6% of GLCM textural features, 12.3% of vegetation indices and 8.4% of spectral bands. The results highlight the importance of the variable GLCM texture, and the use of vegetation mask and RF regression model to collect accurate spatial information on key crown cover attributes, by excluding the spectral contribution of understory vegetation and soil characteristic, of Mediterranean agroforestry systems.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2352938521000963; http://dx.doi.org/10.1016/j.rsase.2021.100560; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85109159910&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2352938521000963; https://dx.doi.org/10.1016/j.rsase.2021.100560
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know