A probabilistic unit commitment model for optimal operation of plug-in electric vehicles in microgrid
Renewable and Sustainable Energy Reviews, ISSN: 1364-0321, Vol: 66, Page: 934-947
2016
- 41Citations
- 83Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
This paper presents a probabilistic Unit Commitment (UC) model for optimal scheduling of wind power, load forecasts and controllability of vehicles in a microgrid using a stochastic programming framework. The microgrid is made up of microturbines, wind turbine, boiler, Plug-in Electric Vehicles (PEVs), thermal storage and battery storage. The proposed model will help the power grid operators with optimal day- ahead planning even with variable operating conditions in respect of load forecasts, controllability of vehicles and wind generation. A set of valid scenarios is assigned for the uncertainties of wind sources, load and PEVs and objective function in the form of expected value. The objective function is to maximize the expected total profit of the UC schedule for the set of scenarios from the viewpoint of microgrid management. The probabilistic unit commitment optimizes the objective function using Particle Swarm Optimization (PSO) algorithm. In order to verify the effectiveness of the stochastic modelling and make a comparison with a simple deterministic one, a typical microgrid is used as a case study. The results can be used to evaluate the effect of integration of PEVs on the economic operation of the microgrid. The results also confirm the necessity to consider the key uncertainties of the microgrid; otherwise the results could overly misrepresent the real world operation of the system.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1364032116304270; http://dx.doi.org/10.1016/j.rser.2016.08.013; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84986317366&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1364032116304270; https://dx.doi.org/10.1016/j.rser.2016.08.013
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know