Recent advancements and developments employing 2D-materials in enhancing the performance of electrochemical supercapacitors: A review
Renewable and Sustainable Energy Reviews, ISSN: 1364-0321, Vol: 182, Page: 113423
2023
- 74Citations
- 91Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
The necessity for advancement in the field of energy storage devices is inevitable due to the forthcoming exhaustion in the availability of primitive hydrocarbon deposits. Benign and ecological renewable sources can opt as the perfect substitution for fossil fuels as a remedy for sustainability, which can be stored to meet the overflowing energy demand. Even a single spark in the development of energy storage devices can be viewed as an explosion in the execution of future energy concerns. This review is a token of recent progress in the arena of two-dimensional material-based supercapacitors for energy storage applications, manuscript starts with the need for energy storage devices in the anticipation of upcoming energy catastrophe. A brief introduction to the capacitors along with their classification under various parameters and their peaks and valleys in storing energy are included in the review. The chief attention of the appraisal stands on the capacitors employing the pseudo mechanism but those based on electrochemical double layer and faradaic mechanism are also included along with performance evaluation. The role of various 2D materials including graphene, molybdenum-based TMDs, tungsten-based TMDs, MXene, two-dimensional metal-oxides and phosphides in enhancing the charge storage performance are scrutinized in the review.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1364032123002800; http://dx.doi.org/10.1016/j.rser.2023.113423; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85161271313&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1364032123002800; https://dx.doi.org/10.1016/j.rser.2023.113423
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know