PlumX Metrics
Embed PlumX Metrics

Methylmercury determination using a hyphenated high performance liquid chromatography ultraviolet cold vapor multipath atomic absorption spectrometry system

Spectrochimica Acta Part B: Atomic Spectroscopy, ISSN: 0584-8547, Vol: 64, Issue: 6, Page: 506-512
2009
  • 11
    Citations
  • 0
    Usage
  • 18
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    11
    • Citation Indexes
      11
  • Captures
    18

Article Description

The present work investigates the use of a multipath cell atomic absorption mercury detector for mercury speciation analysis in a hyphenated high performance liquid chromatography assembly. The multipath absorption cell multiplies the optical path while energy losses are compensated by a very intense primary source. Zeeman-effect background correction compensates for non-specific absorption. For the separation step, the mobile phase consisted in a 0.010% m/v mercaptoethanol solution in 5% methanol (pH = 5), a C 18 column was used as stationary phase, and post column treatment was performed by UV irradiation (60 °C, 13 W). The eluate was then merged with 3 mol L −1 HCl, reduction was performed by a NaBH 4 solution, and the Hg vapor formed was separated at the gas–liquid separator and carried through a desiccant membrane to the detector. The detector was easily attached to the system, since an external gas flow to the gas–liquid separator was provided. A multivariate approach was used to optimize the procedure and peak area was used for measurement. Instrumental limits of detection of 0.05 µg L −1 were obtained for ionic (Hg 2+ ) and HgCH 3 +, for an injection volume of 200 µL. The multipath atomic absorption spectrometer proved to be a competitive mercury detector in hyphenated systems in relation to the most commonly used atomic fluorescence and inductively coupled plasma mass spectrometric detectors. Preliminary application studies were performed for the determination of methyl mercury in sediments.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know