Analysis of pulse-to-pulse fluctuation in underwater Laser-Induced Breakdown Spectroscopy on the basis of error propagation calculation
Spectrochimica Acta Part B: Atomic Spectroscopy, ISSN: 0584-8547, Vol: 183, Page: 106271
2021
- 8Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We study the pulse-to-pulse variation of the emission spectral intensity of underwater laser-induced breakdown spectroscopy. Emission spectral intensity and its dispersion were measured as a function of the fluence of the laser pulse at a metal target surface immersed in water. The coefficient of variation, which is an index of the dispersion, showed a minimum at a certain fluence. The dispersion at the low fluences was attributed to the variations of the population density and the atomic excitation temperature, according to the error propagation analysis of the theoretical spectral line intensity based on the Boltzmann distribution. The population density and the temperature showed a negative correlation, which is consistently explained by the unstable division of pulse energy into two parts, i.e., the early part of a pulse is attributed to materials ablation and hence to the population density, while the other part to plasma heating and hence to the temperature.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0584854721002287; http://dx.doi.org/10.1016/j.sab.2021.106271; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85112354159&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S0584854721002287; https://dx.doi.org/10.1016/j.sab.2021.106271
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know