RNA ensembles from in vitro to in vivo : Toward predictive models of RNA cellular function
Current Opinion in Structural Biology, ISSN: 0959-440X, Vol: 89, Page: 102915
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Deepening our understanding of RNA biology and accelerating development of RNA-based therapeutics go hand-in-hand—both requiring a transition from qualitative descriptions of RNA structure to quantitative models capable of predicting RNA behaviors, and from a static to an ensemble view. Ensembles are determined from their free energy landscapes, which define the relative populations of conformational states and the energetic barriers separating them. Experimental determination of RNA ensembles over the past decade has led to powerful predictive models of RNA behavior in vitro. It has also been shown during this time that the cellular environment redistributes RNA ensembles, changing the abundances of functionally relevant conformers relative to in vitro contexts with subsequent functional RNA consequences. However, recent studies have demonstrated that testing models built from in vitro ensembles with highly quantitative measurements of RNA cellular function, aided by emerging computational methodologies, enables predictive modelling of cellular activity and biological discovery.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0959440X24001428; http://dx.doi.org/10.1016/j.sbi.2024.102915; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85205964812&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39401473; https://linkinghub.elsevier.com/retrieve/pii/S0959440X24001428
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know