A single psychotomimetic dose of ketamine decreases thalamocortical spindles and delta oscillations in the sedated rat
Schizophrenia Research, ISSN: 0920-9964, Vol: 222, Page: 362-374
2020
- 14Citations
- 43Captures
- 3Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- CrossRef9
- Captures43
- Readers43
- 43
- Mentions3
- News Mentions2
- 2
- Blog Mentions1
- 1
Most Recent Blog
NMDA receptors may link psychosis and sleep deficits
NMDA receptor hypofunction is involved in the reduction of sleep spindles and delta oscillations, which appear in the brain during deep natural sleep. Findings confirm the role NMDA receptors play in sleep disorders that accompany psychotic states.
Most Recent News
The Signs of Schizophrenia in the Sleeping Brain
An international team of researchers, including HSE Univesrity's Sofya Kulikova , have discovered clues to why electroencephalograms (EEG) of people with schizophrenic show a deficit of
Article Description
In patients with psychotic disorders, sleep spindles are reduced, supporting the hypothesis that the thalamus and glutamate receptors play a crucial etio-pathophysiological role, whose underlying mechanisms remain unknown. We hypothesized that a reduced function of NMDA receptors is involved in the spindle deficit observed in schizophrenia. An electrophysiological multisite cell-to-network exploration was used to investigate, in pentobarbital-sedated rats, the effects of a single psychotomimetic dose of the NMDA glutamate receptor antagonist ketamine in the sensorimotor and associative/cognitive thalamocortical (TC) systems. Under the control condition, spontaneously-occurring spindles (intra-frequency: 10–16 waves/s) and delta-frequency (1–4 Hz) oscillations were recorded in the frontoparietal cortical EEG, in thalamic extracellular recordings, in dual juxtacellularly recorded GABAergic thalamic reticular nucleus (TRN) and glutamatergic TC neurons, and in intracellularly recorded TC neurons. The TRN cells rhythmically exhibited robust high-frequency bursts of action potentials (7 to 15 APs at 200–700 Hz). A single administration of low-dose ketamine fleetingly reduced TC spindles and delta oscillations, amplified ongoing gamma-(30–80 Hz) and higher-frequency oscillations, and switched the firing pattern of both TC and TRN neurons from a burst mode to a single AP mode. Furthermore, ketamine strengthened the gamma-frequency band TRN-TC connectivity. The antipsychotic clozapine consistently prevented the ketamine effects on spindles, delta- and gamma−/higher-frequency TC oscillations. The present findings support the hypothesis that NMDA receptor hypofunction is involved in the reduction in sleep spindles and delta oscillations. The ketamine-induced swift conversion of ongoing TC-TRN activities may have involved at least both the ascending reticular activating system and the corticothalamic pathway.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S092099642030236X; http://dx.doi.org/10.1016/j.schres.2020.04.029; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85085954019&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/32507548; https://linkinghub.elsevier.com/retrieve/pii/S092099642030236X; https://dx.doi.org/10.1016/j.schres.2020.04.029
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know