Impact of bloom events on dissolved organic matter fluorophore signatures in Ohio waters
Science of The Total Environment, ISSN: 0048-9697, Vol: 699, Page: 134003
2020
- 11Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Due to the increase in severe cyanobacterial blooms in drinking water sources and recreational waters across the globe, inexpensive and reliable methods of detecting oncoming blooms are needed. Cyanobacterial blooms can contribute substantially to the bulk chromophoric dissolved organic matter pool. Thus, the fluorescence signature of organic matter derived from these blooms may be an indicator of upcoming blooms. Water samples from five sites around Ohio were collected regularly between February and October 2017. A PARAFAC model was developed to determine if these protein-like fluorophores could be linked to bloom biomass and whether they were absent in dissolved organic matter from oligotrophic waters. One reference site at an oligotrophic reservoir was included to confirm the lack of protein-like fluorophores in the absence of a bloom event. We found that an increase in tryptophan-like and tyrosine-like fluorophores occurs before the increase in chlorophyll a levels, associated with bloom biomass, in some Ohio waters affected by cyanobacterial blooms; however, protein-like fluorophores are not correlated with levels of the cyanotoxin, microcystin. The excitation and emission wavelengths of these fluorophores (tryptophan-like: 239/341 nm, tyrosine-like: 248/306 nm) may be used to monitor impending blooms in waters heavily impacted by cyanobacteria but may not be applicable to waters receiving treated wastewater discharges.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969719339804; http://dx.doi.org/10.1016/j.scitotenv.2019.134003; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85072193007&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/31522052; https://linkinghub.elsevier.com/retrieve/pii/S0048969719339804; https://dx.doi.org/10.1016/j.scitotenv.2019.134003
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know