Theoretical study of the formation and nucleation mechanism of highly oxygenated multi-functional organic compounds produced by α-pinene
Science of The Total Environment, ISSN: 0048-9697, Vol: 780, Page: 146422
2021
- 14Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In recent years, highly oxygenated organic molecules (HOMs) derived from photochemical reactions of α-pinene, the most abundant monoterpene, have been considered as important precursors of biogenic particles. However, the specific reactions of HOMs remain largely unknown, especially the corresponding formation and nucleation mechanism in the nanoscale. In this study, we implemented quantum chemical calculations and molecular dynamics (MD) simulations to explore the mechanism of the formation of HOM monomers/dimers by ozonolysis and autoxidation of α-pinene. Furthermore, we investigated the mechanisms of HOMs with different oxygen-to‑carbon (O/C) ratios and functional groups participating in neutral and ion-induced nucleation. The results show that the formation of HOMs is hardly affected by water, sulfuric acid and ions. In the ion-induced nucleation, HOM can dominate the initial nucleation steps; however, in the neutral nucleation, HOMs are more likely to participate in the growth stage. In addition, the nucleation ability of HOM has a bearing on the O/C ratio and the types of the functional groups. The current calculations provide valuable insight into the formation mechanism of the pure organic particles at low sulfuric acid concentrations.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S004896972101490X; http://dx.doi.org/10.1016/j.scitotenv.2021.146422; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85102967823&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/33770596; https://linkinghub.elsevier.com/retrieve/pii/S004896972101490X; https://dx.doi.org/10.1016/j.scitotenv.2021.146422
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know