Morphological and ecological responses of a managed coastal sand dune to experimental notches
Science of The Total Environment, ISSN: 0048-9697, Vol: 782, Page: 146813
2021
- 26Citations
- 93Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In northern Europe, coastal dune remobilization by restoring natural processes is considered by some to maintain the coastal dune in chronically eroding sectors by migrating landward and to restore dune ecology. In wet climatic contexts, this nature-based solution has been shown to induce an increase in both sand bare areas and vegetation diversity. However, it has never been tested in the coastal dunes of southern Europe with a drier climate and, thus, more stressful conditions, where disturbance may inversely decrease vegetation diversity. An original experiment was set up in 2018 on a 4-km stretch of coastal dune in southwest France where Experimental Notches (EN) were excavated in the incipient foredune, referred to as West Experimental Notch (WEN), and in the established foredune, referred as to East Experimental Notch (EEN). Morphological and ecological responses were monitored using UAV photogrammetry and vegetation sampling along transects during two years with contrasted winter storm conditions. During the first winter characterized by calm wind conditions, a rapid filling of the WENs and the initiation of deposition lobes landward of the EENs were observed. Stronger winds during the second winter led to the development of deposition lobes of the EENs, increasing both their volume, up to 6 times, and their cross-shore elongation. The increase in disturbance induced by the notches had a significant impact on vegetation. New sandy bares were colonized by pioneer species leading to an increase in species richness and rejuvenation, in particular landward of the EENs. Although longer-term monitoring is required to draw conclusions, these results suggest that the excavation of foredune notches are able to re-establish an ecomorphological dynamic in the dunes of southwest France on the time scales of years, promoting landward sand transport and, thus, the foredune landward translation, while not threatening diversity. Such approach may become a relevant adaptation strategy to sea level rise and increased erosion in this region of the world.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969721018817; http://dx.doi.org/10.1016/j.scitotenv.2021.146813; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85103978252&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/33848855; https://linkinghub.elsevier.com/retrieve/pii/S0048969721018817; https://dx.doi.org/10.1016/j.scitotenv.2021.146813
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know