Using crop diversity to lower pesticide use: Socio-ecological approaches
Science of The Total Environment, ISSN: 0048-9697, Vol: 804, Page: 150156
2022
- 45Citations
- 109Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations45
- Citation Indexes45
- CrossRef45
- 45
- Captures109
- Readers109
- 109
Review Description
The farming practices adopted since the end of the Second World War, based on large areas of monocultures and chemical use, have adversely affected the health of farmers and consumers and dramatically reduced farmland biodiversity. As a consequence, many studies over more than twenty years have stated that agriculture is facing three main challenges: (1) feeding the growing world population (2) with more environmentally friendly products (3) at a reasonable return for the producer. Increasing the efficacy of biocontrol could be one lever for agriculture to meet these expectations. In this study we propose implementation of a relatively under-researched system based on the management of landscape level crop diversity that would reduce demand for pesticide use and increase conservation biocontrol. The principle of manipulating crop diversity over space and time at a landscape scale is to optimize resource continuity, such as food and shelter for natural enemies to increase biocontrol services, reduce pest outbreaks and crop losses. The feasibility of such management options is discussed in relation to environmental, social and economic aspects. The operational and institutional inputs and conditions needed to make the system work are explored, as well as the potential added values of such a system for different stakeholders.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969721052335; http://dx.doi.org/10.1016/j.scitotenv.2021.150156; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85114700888&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/34509833; https://linkinghub.elsevier.com/retrieve/pii/S0048969721052335; https://dx.doi.org/10.1016/j.scitotenv.2021.150156
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know