Novel insights into formation mechanism of organic chloramines from pre-oxidized algae-laden water: Multiple roles of dissolved organic nitrogen
Science of The Total Environment, ISSN: 0048-9697, Vol: 838, Issue: Pt 1, Page: 155894
2022
- 8Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Organic chloramines posed significant risks to drinking water safety. However, the formation mechanism of algae-derived organic chloramines remained unclear. In this study, it was observed that pre-oxidation of algal suspensions increased organic chloramine formation during chlorination. Compared to KMnO 4 pre-oxidation, O 3 significantly increased the organic chloramine formation potential of algal suspensions. Characterization was performed with size exclusion chromatography-multiple detectors (SEC-MDs) to better understand the organic chloramine formation mechanism. The results revealed that low molecular weight proteins (AMW ≤ 0.64 kDa) were the main precursors of organic chloramines after conventional water treatment processes. We then focused on 14 essential amino acids involved in protein formation. Their concentrations and organic chloramine formation potentials were determined, based on which the theoretical organic chloramine formation potentials of the studied samples were evaluated. However, dramatic gaps between theoretical and experimental organic chloramine formations were observed, which suggested that not all organic nitrogen could react with chlorine to form organic chloramine. The condensed dual descriptor (CDD) was calculated to predict the electrophilic substitution reaction sites on peptides. Furthermore, the activation barrier of each proposed reaction was computed to confirm that the reaction sites for chlorine were located on amino groups. This study clarified the formation mechanism of algal-derived organic chloramines, which could provide a powerful theoretical foundation for controlling organic chloramine formation in drinking water processes.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969722029916; http://dx.doi.org/10.1016/j.scitotenv.2022.155894; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85130577105&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35569657; https://linkinghub.elsevier.com/retrieve/pii/S0048969722029916; https://dx.doi.org/10.1016/j.scitotenv.2022.155894
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know