Environmental risk assessment of low molecule benzotriazoles in urban road rainwaters in Poland
Science of The Total Environment, ISSN: 0048-9697, Vol: 839, Page: 156246
2022
- 15Citations
- 52Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef3
- Captures52
- Readers52
- 52
Article Description
This study aimed to identify and quantify benzotriazoles (BTRs) emissions from road traffic and paved areas in an urban environment. Heterocyclic organic compounds BTRs are an emerging threat, under-recognized and under-analyzed in most environmental and water legislation. They are hazardous, potentially mutagenic, and carcinogenic micropollutants, not susceptible to effective biodegradation, and they move easily through the trophic chain, contaminating the environment and water resources. Traffic activities are a common source of BTR emissions in the urban environment, directly polluting human habitats through the different routes and numerous vehicles circulating in the cities. Using twelve heterogeneous locations scattered over a metropolitan area in Poland as a case study, this research analyzed the presence of BTRs in water samples from runoff produced from rainwater and snowmelt. 1H-BTR, 4Me-BTR, 5Me-BTR and 5Cl-BTR were detected in the tested runoff water. 5Cl-BTR was present in all samples and in the highest concentrations reaching 47,000 ng/L. Risk quotients calculated on the basis of the determined concentrations indicate that the highest environmental risk is associated with the presence of 5Cl-BTR and the sum of 4Me-BTR and 5Me-BTR, and the most sensitive organisms are bacteria and invertebrates. The results indicate that it is possible to associate the occurrence of these contaminants with the type of cover, traffic intensity, and vehicle type.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969722033435; http://dx.doi.org/10.1016/j.scitotenv.2022.156246; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85131143048&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35644405; https://linkinghub.elsevier.com/retrieve/pii/S0048969722033435; https://dx.doi.org/10.1016/j.scitotenv.2022.156246
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know