Forest leaf litter nutrient discharge patterns in snowmelt surface runoff and watershed scale remote sensed simulation
Science of The Total Environment, ISSN: 0048-9697, Vol: 839, Page: 156356
2022
- 4Citations
- 22Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The leaf litter decomposition is the important chain for the nutrient cycle in forest ecosystem, but its degradation dynamics and pulse discharge patterns in freeze-thawing watershed needed complete understanding. By integrating field observations and MODIS data, the temporal-spatial distributions of snow coverage and forest leaf litter biomass were analyzed. The critical period for snowmelt runoff under warming temperature and the relatively slow degradation patterns were identified. The on-site observations snowmelt runoff showed discharge concentration and fraction dynamics of typical forest leaf litter nutrients (carbon, nitrogen, and phosphorus) in thawing period. The snowmelt runoff flow and nutrient flux observed the linear regressions with the increased temperature from −8 °C to 6 °C ( r 2 = 0.443–0.987). The concentration of TOC, TN, and TP reached summit value around 50.0, 6.0, and 0.5 mg L −1 in the snowmelt runoff, respectively. The fraction analysis proved that the much high composition of dissolved organic fraction and the biggest organic phosphorus percentage was 94%. The comparison experiments of forest soil with or without leaf litter cover demonstrated that the leaf litter caused a lower discharge load in the snowmelt flow, and the leaf litter cover can decease the potential transport capability of the snowmelt runoff. Coupled with remote sensing data, the watershed leaf litter nutrient discharge model was developed with snowmelt hydrological process mode. The watershed averaged discharge of TOC, TN, and TP from deciduous broad-leaved forest leaf litter was around 851.99, 75.05, and 9.78 mg · m −2, respectively. The yearly simulation showed the spatial distribution variance of the nutrient discharge loads were held by different forest types, elevations, and slopes. The critical loss area identification provided new mitigations solution. The findings suggested that seasonal discharge of forest leaf litter nutrient in thawing period acted as a key contributor to watershed water pollution.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969722034532; http://dx.doi.org/10.1016/j.scitotenv.2022.156356; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85131353464&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35649454; https://linkinghub.elsevier.com/retrieve/pii/S0048969722034532; https://dx.doi.org/10.1016/j.scitotenv.2022.156356
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know