Plastic properties affect the composition of prokaryotic and eukaryotic communities and further regulate the ARGs in their surface biofilms
Science of The Total Environment, ISSN: 0048-9697, Vol: 839, Page: 156362
2022
- 28Citations
- 22Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations28
- Citation Indexes28
- 28
- CrossRef11
- Captures22
- Readers22
- 22
Article Description
Plastic wastes are ubiquitous in the offshore and oceans with an increasing quantity, and inevitably, microbial communities colonized the plastics to form biofilms, which have become dispersal vectors for antibiotic resistance genes (ARGs). This study focused on the impact of plastic properties including hardness, wettability, and zeta-potential on the biomass, prokaryotic and eukaryotic communities and ARGs in biofilms formed on specific plastics (polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET)) in an estuarine environment. The results showed that, in comparison to PP, more biomass characterized by more dry weight, chlorophyll a (Chl a ) and total organic carbon (TOC) was found in biofilms formed on PE and PET, which may be related to their lower surface wettability. Proteobacteria were the dominant prokaryotic phyla, and they accounted for 53.06%, 81.90%, 37.06%, 76.25%, and 54.27% of the total sequences in biofilms on PE, PP, PET, water and sediment, respectively. Ascomycota were the predominant eukaryotic phyla in biofilms, water, and sediment, and their abundances were elevated in biofilms on PP, which accounted for 34.73%. The biofilms on PP had a higher relative abundance of ARGs (3.13) compared to those on PE (2.59) and PET (0.23). Furthermore, both the plastic-biofilm properties (e.g. dry weight, Chl a, and TOC) and microbial communities (e.g., Fungi and Proteobacteria) may be involved in regulating the abundance of ARGs. Moreover, mobile genetic elements (MGEs) were significantly correlated to both the absolute and relative abundance of ARGs, indicating that MGEs may regulate the migration of ARGs in biofilms. Taken together, this investigation provides the significance of the plastic type, surface properties, and surrounding environments in shaping microbial communities and ARGs in biofilms formed on plastics.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969722034593; http://dx.doi.org/10.1016/j.scitotenv.2022.156362; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85131410711&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35640747; https://linkinghub.elsevier.com/retrieve/pii/S0048969722034593; https://dx.doi.org/10.1016/j.scitotenv.2022.156362
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know