Role of iron manganese plaque in the safe production of rice ( Oryza sativa L.) grains: Field evidence at plot and regional scales in cadmium-contaminated paddy soils
Science of The Total Environment, ISSN: 0048-9697, Vol: 903, Page: 166183
2023
- 17Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The relationship between iron manganese plaque (IP) and cadmium (Cd) accumulation by rice in the microenvironment of rice rhizosphere at varying field scales needs to be further explored. In this study, we selected different rice varieties and implemented tailored amendments to ensure the safe production of rice grains in heavily Cd-contaminated farmland situated around an E-waste dismantling site. Through regional surveys, we elucidated the role of IP in facilitating safe rice production. The selection of low-Cd accumulating rice varieties and application of appropriate amendments with sufficient dosages allowed for the effective reduction of Cd transport from soil to rice, resulting in a safe concentration of Cd in rice grains. Analysis using a random forest algorithm indicated that iron (Fe) played a more pivotal role than manganese in soil–rice systems in mitigating Cd accumulation in brown rice. The presence of Fe in IP (IP-Fe) at a low loading mass was unfavorable to the Cd-safe production of rice, while at an IP-Fe loading mass of 52 g/kg, the Cd content in brown rice decreased to a safe level. Furthermore, precipitation, coprecipitation, and complexation of surface functional groups contributed to Cd fixation on IP, as indicated by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, electron probe microanalysis, and Fourier-transform infrared spectroscopy with attenuated total reflection. Our results highlighted the key role of IP in the production of Cd-safe rice at different field scales.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969723048088; http://dx.doi.org/10.1016/j.scitotenv.2023.166183; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85167788863&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37567314; https://linkinghub.elsevier.com/retrieve/pii/S0048969723048088; https://dx.doi.org/10.1016/j.scitotenv.2023.166183
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know