Improving the matching degree between remotely sensed phenological dates and physiological growing stages of soybean by a dynamic offset-adjustment strategy
Science of The Total Environment, ISSN: 0048-9697, Vol: 906, Page: 167783
2024
- 4Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Crop phenology provides crucial information for determining the appropriate timing of farm management practices and predicting crop yields. Satellite remote sensing has become a burgeoning tool for rapid phenological monitoring over wide spatial regions. However, there are significant timing gaps between the satellite-based phenological feature points and ground-observed physiological growing stages of the target. In this study, a dynamic offset-adjustment strategy that aims to improve the matching degree of the above two is proposed and tested with soybean across 16 states in the United States. A series of remotely sensed phenological transition dates that are characteristics of key growing stages of soybean were retrieved using MODIS time series data over the period 2000–2020 and the offset adjustments to the dates were identified by dynamically adjusting offset values till the minimum RMSE between the remote sensing-based and the ground-observed dates of physiological growing stages were obtained. The results indicated that the offset-adjustment strategy can significantly improve the alignments between remotely sensed phenological dates and field-based physiological growing stages of soybean in contrast to these without taking adjustment, with the average RMSE dropping by 58.58 %, 51.59 %, 31.15 %, 25.33 %, 24.67 % in the downturn, peak of season (POS), upturn, stabilization and recession dates, respectively. Among tested remotely sensed characteristics, the end of season (EOS) dates show the greatest alignment with its corresponding physiological growing stage, i.e., the dropping leaves stage. Comparison of the performance of the upturn date and start of season (SOS) in monitoring the date of the emerged stage indicates that the later one exhibits a better consistency with the ground-observed emerged stage after taking the adjustment, with the average RMSE dropping by 56.52 %. The proposed offset-adjustment strategy offers an approach for adjusting remotely sensed characteristics so to make them more consistent with the ground-observed crop physiological growing stages.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969723064100; http://dx.doi.org/10.1016/j.scitotenv.2023.167783; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85174734069&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/37839478; https://linkinghub.elsevier.com/retrieve/pii/S0048969723064100; https://dx.doi.org/10.1016/j.scitotenv.2023.167783
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know