Understanding petroleum vapor fate and transport through high resolution analysis of two distinct vapor plumes
Science of The Total Environment, ISSN: 0048-9697, Vol: 912, Page: 169464
2024
- 4Citations
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
No field study has provided a detailed characterization of the molecular composition and spatial distribution of a vadose zone plume of petroleum volatile organic compounds (VOCs), which is critical to improve the current understanding of petroleum VOC transport and fate. This is study reports a high-resolution analysis of two distinct vapor plumes emanating from two different light non-aqueous phase liquid (LNAPL) sources (an aliphatic-rich LNAPL for Zone #1vs an aromatic-rich LNAPL for Zone #2) at a large petrochemical site. Although deep soil vapor signatures were similar to the source zone LNAPL signatures, the composition of the shallow soil vapors reflected preferential attenuation of certain hydrocarbons over others during upward transport in the vadose zone. Between deeper and shallower soil gas samples, attenuation of aromatics was observed under all conditions, but important differences were observed in attenuation to aliphatic compound classes. Attenuation of all aliphatic compounds was observed under aerobic conditions but little attenuation of any aliphatics was observed under anoxic conditions without methane. In contrast, under methanogenic conditions, paraffins attenuated more than isoparaffins and naphthenes. These results suggest that isoparafins and naphthenes may present more of a vapor intrusion risk than benzene or other aromatic hydrocarbons commonly considered to be petroleum vapor intrusion risk drivers. While the overall vapor composition changed significantly within the vadose zone, diagnostic ratios of relatively recalcitrant alkylcyclopentanes were preserved in shallow soil vapor samples. These alkylcyclopentanes may be useful for distinguishing between petroleum vapor intrusion and other sources of petroleum VOCs detected in indoor air.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969723080944; http://dx.doi.org/10.1016/j.scitotenv.2023.169464; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85180419439&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38123082; https://linkinghub.elsevier.com/retrieve/pii/S0048969723080944; https://dx.doi.org/10.1016/j.scitotenv.2023.169464
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know