Using POI and multisource satellite datasets for mainland China's population spatialization and spatiotemporal changes based on regional heterogeneity
Science of The Total Environment, ISSN: 0048-9697, Vol: 912, Page: 169499
2024
- 10Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Geospatial big data and remote sensing data are widely used in population spatialization studies. However, the relationship between them and population distribution has regional heterogeneity in different geographic contexts. It is necessary to improve data processing methods and spatialization models in areas with large geographical differences. We used land cover data to extract human activity, nighttime light and point-of-interest (POI) data to represent human activity intensity, and considered differences in geographical context to divide mainland China into northern, southern and western regions. We constructed random forest models to generate gridded population distribution datasets with a resolution of 500 m, and quantitatively evaluated the importance of auxiliary data in different geographical contexts. The street-level accuracy assessment showed that our population dataset is more accurate than WorldPop, with a higher R 2 and smaller deviation. The improved datasets provided broad potential for exploring the spatial-temporal changes in grid-level population distribution in China from 2010 to 2020. The results indicated that the population density and settlement area have increased, and the overall pattern of population distribution has remained highly stable, but there are significant differences in population change patterns among cities with different urbanization processes. The importance of the ancillary data to the models varied significantly, with POI contributing the most to the southern region and the least to the western region. Moreover, POI had relatively less influence on model improvement in undeveloped areas. Our study could provide a reference for predicting social and economic spatialized data in different geographical context areas using POI and multisource satellite data.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969723081299; http://dx.doi.org/10.1016/j.scitotenv.2023.169499; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85180377227&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38128656; https://linkinghub.elsevier.com/retrieve/pii/S0048969723081299; https://dx.doi.org/10.1016/j.scitotenv.2023.169499
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know