Predicting natural arsenic enrichment in peat-bearing, alluvial and coastal depositional systems: A generalized model based on sequence stratigraphy
Science of The Total Environment, ISSN: 0048-9697, Vol: 924, Page: 171571
2024
- 1Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Hazardously high concentrations of arsenic exceeding the threshold limits for soils and drinking waters have been widely reported from Quaternary sedimentary successions and shallow aquifers of alluvial and coastal lowlands worldwide, raising public health concerns due to potential human exposure to arsenic. A combined sedimentological and geochemical analysis of subsurface deposits, 2.5–50 m deep, from the SE Po Plain (Italy) documents a systematic tendency for naturally-occurring arsenic to accumulate in peat-rich layers, with concentrations invariably greater than maximum permissible levels. A total of 366 bulk sediment samples from 40 cores that penetrated peat-bearing deposits were analysed by X-ray fluorescence. Arsenic concentrations associated with 7 peat-free lithofacies associations (fluvial-channel, levee/crevasse, floodplain, swamp, lagoon/bay, beach-barrier, and offshore/prodelta) exhibit background values invariably below threshold levels (<20 mg/kg). In contrast, total arsenic contents from peaty clay and peat showed 2–6 times larger As accumulation. A total of 204 near-surface (0–2.5 m) samples from modern alluvial and coastal depositional environments exhibit the same trends as their deeper counterparts, total arsenic peaking at peat horizons above the threshold values for contaminated soils. The arsenic-bearing, peat-rich Quaternary successions of the Po Plain accumulated under persisting reducing conditions in wetlands of backstepping estuarine and prograding deltaic depositional environments during the Early-Middle Holocene sea-level rise and subsequent stillstand. Contamination of the Holocene and underlying Pleistocene aquifer systems likely occurred through the release of As by microbially-mediated reductive dissolution. Using high-resolution sequence-stratigraphic concepts, we document that the Late Pleistocene-Holocene lithofacies architecture dictates the subsurface distribution of As. The “wetland trajectory”, i.e. the path taken by the landward/seaward shift of peat-rich depositional environments during the Holocene, may help predict spatial patterns of natural As distribution, delineating the highest As-hazard zones and providing a realistic view of aquifer contamination even in unknown areas.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969724017121; http://dx.doi.org/10.1016/j.scitotenv.2024.171571; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85188245589&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/38492587; https://linkinghub.elsevier.com/retrieve/pii/S0048969724017121; https://dx.doi.org/10.1016/j.scitotenv.2024.171571
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know