PlumX Metrics
Embed PlumX Metrics

Seasonality of mercury and its fractions in microplastics biofilms -comparison to natural biofilms, suspended particulate matter and bottom sediment

Science of The Total Environment, ISSN: 0048-9697, Vol: 948, Page: 174814
2024
  • 0
    Citations
  • 0
    Usage
  • 55
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Biofilms can enhance the sorption of heavy metals onto microplastic (MP) surfaces. However, most research in this field relies on laboratory experiments and neglects metal fractions and seasonal variations. Further studies of the metal/biofilm interaction in the aquatic environment are essential for assessing the ecological threat that MPs pose. The present study used in situ experiments in an environment conducive to biofouling (Vistula Lagoon, Baltic Sea). The objective was to investigate the sorption of mercury and its fractions (thermodesorption technique) in MP (polypropylene-PP, polystyrene-PS, polylactide-PLA) biofilms and natural matrices across three seasons. After one month of incubation, the Hg concentrations in MP and natural substratum (gravel grains-G) biofilms were similar (MP: 145 ± 45 ng/g d.w.; G: 132 ± 23 ng/g d.w.) and approximately twofold those of suspended particulate matter (SPM) (63 ± 27 ng/g d.w.). Hg concentrations in biofilms and sediments were similar, but labile fractions dominated in biofilms and stable fractions in sediments. Seasonal Hg concentrations in MP biofilms decreased over summer>winter>spring, with significant variation for mineral and loosely bound Hg fractions. Multiple regression analysis revealed that hydrochemical conditions and sediment resuspension played a crucial role in the observed variability. The influence of polymer type and morphology (pellets, fibres, aged MP) on Hg sorption in biofilms was visible only in high summer temperatures. In this season, PP fibres and aged PP pellets encouraged biofilm growth and the accumulation of labile Hg fractions. Additionally, high concentrations of mineral (stable and semi-labile) Hg fractions were found in expanded PS biofilms. These findings suggest that organisms that ingest MPs or feed on the biofilms are exposed to the adverse effects of Hg and the presence of MPs in aquatic ecosystems may facilitate the transfer of mercury within the food chain.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know