Advances in analysis of atmospheric ultrafine particles and application in air quality, climate, and health research
Science of The Total Environment, ISSN: 0048-9697, Vol: 949, Page: 175045
2024
- 2Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
There is growing interest in the contribution of ultrafine particles to air quality, climate, and human health. Ultrafine particles are of central significance for the influence of radiative forcing of climate change by involving in the formation of clouds and precipitation. Moreover, exposure to ultrafine particles can enhance the disease burden. The determination of those effects of ultrafine particles strongly depends on their chemical composition and physicochemical properties. This review focuses on the advanced techniques for the characterization of chemical composition and physicochemical properties of ultrafine particles in the past five years. The current analytical methodologies are broadly classified into electron and X-ray microscopy, optical spectroscopy and microscopy, electrical mobility, and mass spectrometry, and then described and discussed its operation principle, advantages, and limitations. Besides measurements, application of the state-of-the-art techniques is briefly reviewed to help us to promote a better understanding of atmospheric ultrafine particles relevant to air quality, climate, and health.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969724051957; http://dx.doi.org/10.1016/j.scitotenv.2024.175045; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85199771822&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39067589; https://linkinghub.elsevier.com/retrieve/pii/S0048969724051957
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know