Drivers of wind and water erosion for river sediments in a typical coarse sandy area in the middle reaches of the Yellow River
Science of The Total Environment, ISSN: 0048-9697, Vol: 955, Page: 177039
2024
- 14Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures14
- Readers14
- 14
Article Description
Warmer temperatures and the combined effects of wind and water erosion leads to serious soil loss. Identifying the contribution of different drivers to wind and water compound erosion can improve soil erosion management in the watershed. Accordingly, we calculated the erosion energy based on energy theory and applied the mutation test and trend analysis to explore environmental drivers, runoff, and sediment changes for the Kuyehe River Basin. Rainfall erosion energy, wind erosion energy, air temperature, NDVI, and land cover were selected as potential drivers to quantify the contribution of sediment change using a partial least squares regression model. The results indicated that rainfall erosion energy decreased, wind erosion energy increased and then decreased, temperature increased, and NDVI increased during the period 1990–2020. The relationship between runoff and sediment transport in the basin shifted from more water and more sediment to more water and less sediment, and the timing of the mutation was different for runoff and sediment, with the runoff mutation occurring in 1997 and the sediment mutation occurring during 2003–2004. After sediment mutations, wind, NDVI, and land cover of forests showed higher importance for sediment transport changes, while precipitation and temperature were less important. In addition, the importance of cropland, shrub and grassland, and other land cover types varied considerably between sub-basins. Over 70 % of the contribution to sediment change was due to land cover change, while the cumulative contribution of forest and NDVI was about 30 %. The study identified the key drivers of sediment transport changes in the basin and provided valuable insights for future studies of wind and water compound erosion at the basin scale.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0048969724071961; http://dx.doi.org/10.1016/j.scitotenv.2024.177039; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85206994016&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/39437911; https://linkinghub.elsevier.com/retrieve/pii/S0048969724071961
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know