Magnesium modified activated carbons derived from coconut shells for the removal of fluoride from water
Sustainable Chemistry and Pharmacy, ISSN: 2352-5541, Vol: 31, Page: 100898
2023
- 46Citations
- 46Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
New Findings from Aristotle University of Thessaloniki Update Understanding of Sustainable Chemistry and Pharmacy (Magnesium Modified Activated Carbons Derived From Coconut Shells for the Removal of Fluoride From Water)
2023 APR 03 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Drug Daily -- New research on Drugs and Therapies - Sustainable Chemistry
Article Description
Fluoride presence in water has been recognized as one of the major water related global problems, rendering the development of effective technologies for its removal as a very significant issue, for improving human health and well-being in the affected areas. Among the commonly applied technologies for fluoride removal, adsorption has gained great attention because it offers efficiency, low-cost treatment and simple operation. The present study aimed at developing novel adsorbents, namely activated carbon modified by magnesium or/and lanthanum and silica for fluoride removal. The structure and the morphology of resulted modified activated carbons (AC-Mg and AC-Si-Mg-La) were studied in detail by the application of BET, XRD, FTIR and SEM techniques. The proposed adsorbent materials were tested for the treatment of fluoride containing waters. The effects of the adsorbent's dosage, initial concentration of pollutant, pH value of the water and regeneration efficiency were examined. According to the obtained results, the maximum adsorption was observed at pH 8, after 4 h of reaction and 0.2 g/L of adsorbent dose. Langmuir-Freundlich isotherm model and pseudo-second order kinetic model fitted the experimental data sufficiently. At pH 8 a maximum adsorption capacity of 36.56 mg/g for AC-Mg and 54.48 mg/g for AC-Si-Mg-La, was found. Repeated adsorption and regeneration studies showed only a 10% decrease of adsorption capacity after 4 regeneration cycles of operation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2352554122003023; http://dx.doi.org/10.1016/j.scp.2022.100898; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85147014612&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2352554122003023; https://dx.doi.org/10.1016/j.scp.2022.100898
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know