Mode substitution and carbon emission impacts of electric bike sharing systems
Sustainable Cities and Society, ISSN: 2210-6707, Vol: 89, Page: 104312
2023
- 42Citations
- 75Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper presents a quantitative analysis of the mode substitution and usage-phase carbon emission impacts of the electric bike-sharing system (EBSS) on urban transportation using self-administrated survey data and EBSS operating data. The substitution probabilities of a given EBSS trip for different transport modes is determined using the Bayesian inference method. Emission impact is measured by comparing the current emissions to those generated by other transport modes without the EBSS. Remarkably, the partial-trip substitution impact of the EBSS on car travel is investigated, where the EBSS serves as a connection to public transit. The results show that the EBSS barely generates new trips; most short-distance EBSS trips were transferred from walking and conventional bike-sharing, and most long-distance trips were shifted from cars, buses, and the subway. Around 5% of EBSS trips less than 2 km were transferred from the car by integrating with public transit while accounting for over half of the emission reduction. Based on our method, the CO 2 emissions per km of EBSS are 19.47 g, with 6.91 g generated by e-bikes due to electricity consumption and 12.56 g by trucks for battery swapping and bike relocation. The studied EBSS has saved 75.52% of CO 2 emissions that other transport modes could have generated.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2210670722006163; http://dx.doi.org/10.1016/j.scs.2022.104312; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85142725442&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2210670722006163; https://dx.doi.org/10.1016/j.scs.2022.104312
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know