Spatiotemporal heterogeneity of the relationship between urban morphology and land surface temperature at a block scale
Sustainable Cities and Society, ISSN: 2210-6707, Vol: 113, Page: 105711
2024
- 5Citations
- 20Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Understanding the relationship between urban morphology and land surface temperature (LST) is essential for mitigating urban heat island (UHI). This study investigates the spatiotemporal heterogeneity of the relationship between urban morphology and LST across 5 experiment sites located in different temperature zones of China at a block scale. Normalized difference vegetation index (NDVI), building density (BD), floor area ratio (FAR), average building height (ABH) and open space ratio (OSR) are adopted to indicate the physical urban morphology. The results show positive relationship between BD and LST, and negative relations between LST and NDVI, ABH and OSR from a global perspective. The relations of FAR to LST are mixed. However, variable relationship between urban morphological indicators (UMIs) and LST are significantly observed at a block scale. 12 scenes that generate local relations of UMIs and LST differing from that of the surroundings are identified. Typical strategies for land development, vegetation phenology, large natural elements and human activities may be the most important causative factors to the heterogenous relationship between urban morphology and LST. Findings derived in the study would promote studies on mechanisms of the effects of urban morphology on LST and contribute to practices of UHI mitigation.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2210670724005365; http://dx.doi.org/10.1016/j.scs.2024.105711; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85200126968&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2210670724005365; https://dx.doi.org/10.1016/j.scs.2024.105711
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know