PlumX Metrics
Embed PlumX Metrics

Multi-objective energy management using a smart charging technique of a microgrid with the charging impact of plug-in hybrid electric vehicles

Sustainable Cities and Society, ISSN: 2210-6707, Vol: 117, Page: 105923
2024
  • 6
    Citations
  • 0
    Usage
  • 17
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The Microgrid (MG) concept is being developed to better integrate renewable energy sources and automate distribution networks. Microgrids combine distributed generating units (DGs) and energy storage systems to achieve this. This research paper aims to simultaneously minimize the daily operational cost and net environmental pollution of a small MG system, factoring in the charging demand from Plug-in-Hybrid Electric Vehicles (PHEVs) and consumer load demands. The proposed energy management process not only minimizes operational costs and emissions, but also determines the optimal battery size for the energy storage system. The analysis also explores the importance of two critical variables - the operation and maintenance costs of the DGs, and the total daily cost of the battery energy storage system. The demand for PHEV charging is managed using an intelligent charging approach. Given the complexity of the optimization, a recently developed metaheuristic algorithm, Slime Mould Algorithm (SMA), is applied. The performance of SMA is compared against the Grasshopper Optimization Algorithm and Sine Cosine Algorithm. To solve the multi-objective problem, a weighted sum method maintaining non-dominance and a fuzzy decision-maker technique are employed alongside the suggested algorithms. Three different scenarios verify the proposed method's effectiveness.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know