Genetics of Chronic Kidney Disease in Low-Resource Settings
Seminars in Nephrology, ISSN: 0270-9295, Vol: 42, Issue: 5, Page: 151314
2022
- 3Citations
- 37Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- Captures37
- Readers37
- 37
Review Description
Advances in kidney genomics in the past 20 years has opened the door for more precise diagnosis of kidney disease and identification of new and specific therapeutic agents. Despite these advances, an imbalance exists between low-resource and affluent regions of the world. Individuals of European ancestry from the United States, United Kingdom, and Iceland account for 16% of the world's population, but represent more than 80% of all genome-wide association studies. South Asia, Southeast Asia, Latin America, and Africa together account for 57% of the world population but less than 5% of genome-wide association studies. Implications of this difference include limitations in new variant discovery, inaccurate interpretation of the effect of genetic variants in non-European populations, and unequal access to genomic testing and novel therapies in resource-poor regions. It also further introduces ethical, legal, and social pitfalls, and ultimately may propagate global health inequities. Ongoing efforts to reduce the imbalance in low-resource regions include funding and capacity building, population-based genome sequencing, population-based genome registries, and genetic research networks. More funding, training, and capacity building for infrastructure and expertise is needed in resource-poor regions. Focusing on this will ensure multiple-fold returns on investments in genomic research and technology.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0270929523000116; http://dx.doi.org/10.1016/j.semnephrol.2023.151314; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85148357204&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/36801667; https://linkinghub.elsevier.com/retrieve/pii/S0270929523000116; https://dx.doi.org/10.1016/j.semnephrol.2023.151314
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know