The effect of alkali and alkaline earth metals oxides addition on oxygen uncoupling rate of copper-based oxygen carrier: A kinetic and experimental investigations
Separation and Purification Technology, ISSN: 1383-5866, Vol: 275, Page: 119176
2021
- 14Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Oxygen uncoupling is one of the most valued properties of oxygen carriers in chemical looping field. It allows to combust the fuel without gasification step and significantly enhances reactivity in all chemical looping fuel oxidation technologies (combustion, gasification, and reforming). Furthermore, it progressed recently to produce pure oxygen (Chemical looping air separation). However, few materials have this merit, among which CuO has the highest reactivity and oxygen transport (uncoupling) capacity. However, it needs a high temperature (about 950 °C) for a high effective reaction rate; in contrast, it suffers high attrition rate and sintering about this temperature. This work aimed to test the ability to enhance the uncoupling at lower temperatures by adding a small amount of common alkali and alkaline earth metals (AAEMs) oxides. CuO was prepared with 5%wt of Na 2 O, K 2 O, MgO, and CaO. An isothermal test was conducted in TGA at (850, 890, and 930 °C) to investigate the effect of additions. For deeper investigation, kinetic analysis has been conducted based on isothermal results. The model of reaction inferred was A2α of Avrami-Erofeev ( gα=-ln1-α1/2 ) for pure CuO and with all additions, and then the activation energies and pre-exponential factors were calculated. Accordingly, CaO addition showed little increase in the reaction rates while the effect of MgO was significant. In contrast, Na 2 O and K 2 O addition declined the uncoupling rate.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1383586621008868; http://dx.doi.org/10.1016/j.seppur.2021.119176; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85108649768&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1383586621008868; https://dx.doi.org/10.1016/j.seppur.2021.119176
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know