Efficient PMS activation toward degradation of bisphenol A by metal-free nitrogen-doped hollow carbon spheres
Separation and Purification Technology, ISSN: 1383-5866, Vol: 339, Page: 126740
2024
- 19Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Peroxymonosulfate (PMS) activation methods conventionally face challenges such as high energy consumption and the risk of metal leaching, limiting their practical application. Metal-free catalysts often face the problem of low catalytic activity. This study designed an in-situ nitrogen-doped hollow carbon catalyst (DNC-9), which offers balances efficient catalytic performance and metal-free catalysis. The results indicate that the DNC-9/PMS system effectively degrades bisphenol A, achieving complete degradation over a broad pH range (3.0–9.0). Through structure modification, the degradation efficiency of bisphenol A compared with SiO 2 @DNC-9/PMS system was improved by around 6 times and the degradation kinetic rate can reach 0.346 min −1. DNC-9 can activate PMS, resulting in a higher concentration of singlet oxygen without the generation of free radicals. Graphitic nitrogen in DNC-9 plays a crucial role in this activation, offering adsorption sites that facilitate decomposition of PMS and generating 1 O 2. In addition, graphitic nitrogen forms a transient active intermediate, DNC-9-PMS*, enhancing bisphenol A degradation. The catalyst recovers its high activity to complete bisphenol A removal with 15 min after thermal regeneration in cyclic experiments, demonstrating its potential as a practical solution for the efficient degradation of emerging contaminants.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1383586624004799; http://dx.doi.org/10.1016/j.seppur.2024.126740; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85187264613&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1383586624004799; https://dx.doi.org/10.1016/j.seppur.2024.126740
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know