AuPt bimetallic loaded defect state g-C 3 N 4 enhances photocatalytic H 2 evolution: Exploring synergistic effects and charge transfer mechanisms
Separation and Purification Technology, ISSN: 1383-5866, Vol: 354, Page: 128884
2025
- 6Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
AuPt alloy nanoparticles (NPs) were prepared using a simple photodeposition method to modify defective state g-C 3 N 4 nanosheets (HCN) which contained N vacancies, B doping, and C N groups. The visible diffuse reflectance spectra (DRS) indicate that AuPt/HCN exhibits high light absorption capability. The photoluminescence spectrum (PL) and steady-state surface photovoltage (SPV) indicate that AuPt/HCN possesses a high rate of photogenerated charge separation and a high efficiency of photogenerated electron transfer. The electrochemical tests indicate that AuPt/HCN exhibits lower electrochemical impedance. AuPt/HCN (1.0 wt%) exhibits outstanding photocatalytic hydrogen evolution efficiency, producing hydrogen at a rate of 2095 μmol·g −1 ·h −1 under visible light, which is 2.10 times and 1.55 times higher than that of monometallic Au/HCN (1.0 wt%) (997 μmol·g −1 ·h −1 ) and Pt/HCN (1.0 wt%) (1349 μmol·g −1 ·h −1 ), respectively. The bimetallic synergistic effect of AuPt alloy NPs co-catalysts enhances the photocatalytic hydrogen evolution activity of AuPt/HCN composite photocatalysts.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know